If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+10r-16=0
a = 1; b = 10; c = -16;
Δ = b2-4ac
Δ = 102-4·1·(-16)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{41}}{2*1}=\frac{-10-2\sqrt{41}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{41}}{2*1}=\frac{-10+2\sqrt{41}}{2} $
| (11+x)^2=121 | | 14-h=6 | | −1/4a−4=7/4a−3 | | 3x2-22=50 | | ×+1.4=2x+0.1 | | -3×x+2=-30 | | 3x22=50 | | w+|2.8|=4.3 | | 2x^-6x^2= | | 7,200=800s | | -3×p+2=-30 | | -15=4/5p=9 | | 7x^2+64x-143=-43 | | 4^7-4x=4^9x-7 | | 15x+4=13x+24 | | -3+2x=x+11 | | 12.5x+30=13x | | -4=-2+m/8 | | 24=3x+2x+-6 | | 5/9x-13=27 | | y+15=87 | | 4x+x^2=45 | | 24=3x+2x+15 | | 150+4x=100+50x | | 15/4(4/15x)=15/4(4) | | 36=4b | | x/(-3)+2=1 | | 4x^2+56x-144=0 | | (3i-6)(2i+4)=0 | | P/7=68-k/4 | | 11x+9=12x+2 | | 65x=75+43 |